
© 2023 FuzzingLabs - Building Cairo Security Tools - ETHCC6

Journey into
Building Security Tools

For Cairo/Starknet Smart Contracts

1



© 2023 FuzzingLabs - Building Cairo Security Tools - ETHCC6

Patrick Ventuzelo (@Pat_Ventuzelo)
● Founder & CEO of FuzzingLabs | Senior Security Researcher

○ Fuzzing and vulnerability research
■ 100+ bugs founds in L1/L2 protocols

○ Development of security tools
■ thoth, cairo-fuzzer, octopus, etc.

● Training/Online courses
○ Rust Security Audit & Fuzzing
○ Go Security Audit & Fuzzing
○ WebAssembly Reversing & Analysis
○ Ethereum/Solidity Security (WIP)
○ Cairo/Starknet Security (WIP)

● Blockchain security since 2016
○ Public Speaker: EthCC speaker (x3), Devcon, DSS 
○ Research about EVM reversing & Tx analysis
○ Lead developer of Beaconfuzz, beacon chain differential fuzzer
○ Fuzzing and audits of dozen of L1/L2 protocol implementations
○ Currently building a web3 profiling & deanonymization tool

2

https://twitter.com/Pat_Ventuzelo
https://github.com/FuzzingLabs/thoth
https://github.com/FuzzingLabs/cairo-fuzzer
https://github.com/FuzzingLabs/octopus
https://github.com/sigp/beacon-fuzz


© 2023 FuzzingLabs - Building Cairo Security Tools - ETHCC6

Thoth, 
the Cairo/Starknet security toolkit

3



© 2023 FuzzingLabs - Building Cairo Security Tools - ETHCC6

Compilation - Cairo into JSON artifact
 

4



© 2023 FuzzingLabs - Building Cairo Security Tools - ETHCC6

Why Thoth has been created? 
● Thoth, the Cairo/Starknet security toolkit - github

● Problematic
○ Most contracts on the mainnet/testnet are not verified
○ Only the full JSON artifact is mandatory and stored online

● Goal
○ Analysis of closed source contract for due diligence
○ Help developers to understand compiler operations
○ Thoth is intended to be a complete tool

● Name: Thoth
○ God of the moon, sacred texts, mathematics, sciences, magic, messenger and 

recorder of the deities, master of knowledge, and patron of scribes.
○ Inspired by other amazing tools

■ Octopus, Slither, Mythril, etc.

● Only the bytecode is the Truth

5

https://github.com/FuzzingLabs/thoth
https://github.com/FuzzingLabs/octopus
https://github.com/crytic/slither
https://github.com/ConsenSys/mythril


© 2023 FuzzingLabs - Building Cairo Security Tools - ETHCC6

2022

Disassembler
Decompiler

Call graph

July/August

Thoth - Evolution

6



© 2023 FuzzingLabs - Building Cairo Security Tools - ETHCC6

Thoth 0.1.0 - Disassembler

7

● “Visual representation of the bytecode as a 
linear sequence of instructions.”

● Several data are in the JSON.
● Interesting information

○ Builtins
○ Structures
○ Events
○ Constants representation
○ Functions ID and names matching



© 2023 FuzzingLabs - Building Cairo Security Tools - ETHCC6

Thoth 0.2.0 - Decompiler

8

● “A decompiler is a computer program that takes 
bytecode as input, and attempts to create a 
high-level source file that (ideally) can be 
successfully compiled.”

● Features
○ Recovery of parameters from function calls.
○ Generation of imports.

● The first version of the decompiler
○ Similar to the disassembly output.
○ AP/FP is complicated to understand for beginners.
○ Limited support of if/else blocks.



© 2023 FuzzingLabs - Building Cairo Security Tools - ETHCC6

Thoth 0.2.0 - Call Graph

9

● “Call graph represents calling relationships between subroutines 
in a computer program.”

● Node represents a function.
● Edge(a, b) indicates that function a calls function b.

● Legend:
○ Colors for important functions (import, constructor, etc.)
○ Octagonal shape for entry-point.



© 2023 FuzzingLabs - Building Cairo Security Tools - ETHCC6

Thoth 0.2.0 - Advanced example (dai bridge)
 

10



© 2023 FuzzingLabs - Building Cairo Security Tools - ETHCC6

Disassembler
Decompiler

Call graph

July/August

Decompiler is 
now using SSA

September

Thoth - Evolution

11

2022



© 2023 FuzzingLabs - Building Cairo Security Tools - ETHCC6

Thoth 0.3.0 - SSA Decompiler 

12

● Major decompilation improvement 
○ By leveraging on the CFG.
○ Introduction of Single Static Assignment (SSA).
○ Creation of a virtual stack of variable per basic block.

● Single Static Assignment (SSA)
○ “Static single assignment form (abbreviated SSA form/SSA) is a property 

of an intermediate representation (IR), which requires that each variable 
is assigned exactly once, and every variable is defined before it is used.”

○ Each variable is assigned once.
○ Each variable is defined before being used.
○ phi node (Φ) represents multiple potential value for a same variable 

chosen depending on the predecessor of the current block.



© 2023 FuzzingLabs - Building Cairo Security Tools - ETHCC6

● Thoth 0.3.0 

Thoth 0.3.0 - Decompiler evolution

● Thoth 0.1.0 

13

● Original Source code



© 2023 FuzzingLabs - Building Cairo Security Tools - ETHCC6

Voyager integration
Static Analyzer

October
Disassembler

Decompiler
Call graph

July/August

Decompiler is 
now using SSA

September

Thoth - Evolution

14

2022



© 2023 FuzzingLabs - Building Cairo Security Tools - ETHCC6

Thoth 0.4.0 - integration inside Voyager

15

 



© 2023 FuzzingLabs - Building Cairo Security Tools - ETHCC6

Thoth 0.4.0 - Static Analyzer

16

● The analyzer allows to detect and analyze 
particular behaviors in smart contracts.

○ Using the previously extracted information.

● Analytics
○ Interesting facts about the contract.
○ ERC detections, strings, etc.

● Optimization
○ Detection of potential bytecode 

optimization.
○ Constants propagation, unused assignment, 

unused imports, etc.

● Security
○ Detection of security vulnerabilities & flaws.
○ Integer overflow, Reentrancy, etc.



© 2023 FuzzingLabs - Building Cairo Security Tools - ETHCC6

Thoth 0.4.0 - Example

17



© 2023 FuzzingLabs - Building Cairo Security Tools - ETHCC6

Voyager integration
Static Analyzer

October

2022

Disassembler
Decompiler

Call graph

July/August

Data Flow Graph
Symbolic Execution

November
Decompiler is 

now using SSA

September

Thoth - Evolution

18

2022



© 2023 FuzzingLabs - Building Cairo Security Tools - ETHCC6

Data Flow Graph & Tainting
● Data Flow Graph (DFG)

○ Variables and constants dependencies representation.

● Tainting
○ Allows identifying supplied arguments propagation impact.

● Implement Symbolic execution
○ To mathematically solve the constraints to reach certain paths and detect potential issue and/or optimizations.

19



© 2023 FuzzingLabs - Building Cairo Security Tools - ETHCC6

Voyager integration
Static Analyzer

October

2022

Disassembler
Decompiler

Call graph

July/August

Data Flow Graph
Symbolic Execution

November
Decompiler is 

now using SSA

September

Thoth - Evolution

20

2023

Sierra support:
Decompilation, Call 

Graph, Analyzers

January

2022



© 2023 FuzzingLabs - Building Cairo Security Tools - ETHCC6

Cairo 1.0 and Sierra
● Cairo 1.0

○ New compiler
○ Syntax changed (subset to Rust)
○ More intuitive libraries
○ Improved expressibility, security, and syntax.

● Sierra (Safe Intermediate Representation)
○ Intermediate representation layer

■ between Cairo 1.0 and Cairo byte code.
○ Ensure that every Cairo run

■ i.e. a Cairo program and its input can be proven

● Further readings:
○ Cairo 1.0 Annoncement - link
○ Cairo 1.0 is Here - link
○ Getting Started With Cairo 1.0 - link 
○ Cairo 1.0 and Sierra - link
○ Under the hood of Cairo 1.0: Exploring Sierra - link

21

https://medium.com/starkware/cairo-1-0-aa96eefb19a0
https://medium.com/starkware/cairo-1-0-is-here-7e1ac8377038
https://www.argent.xyz/blog/getting-started-with-cairo-1.0/
https://docs.starknet.io/documentation/architecture_and_concepts/Contracts/cairo-1-and-sierra/
https://medium.com/nethermind-eth/under-the-hood-of-cairo-1-0-exploring-sierra-1220f6dbcf9


© 2023 FuzzingLabs - Building Cairo Security Tools - ETHCC6

Thoth 0.7.0 - Support of Sierra
● Decompilation - link

22

● Call Graph

● Analyzer

https://github.com/FuzzingLabs/thoth/blob/master/sierra/README.md


© 2023 FuzzingLabs - Building Cairo Security Tools - ETHCC6

Voyager integration
Static Analyzer

October

2022

Disassembler
Decompiler

Call graph

July/August

Data Flow Graph
Symbolic Execution

November
Decompiler is 

now using SSA

September

Thoth - Evolution

23

Sierra support:
Decompilation, Call 

Graph, Analyzers

January

2022

VS Code
Github Action

Sierra Symbolic Exec

April/May

2023



© 2023 FuzzingLabs - Building Cairo Security Tools - ETHCC6

Thoth 0.8.0 - VS Code plugin & Github action

24



© 2023 FuzzingLabs - Building Cairo Security Tools - ETHCC6

Thoth 0.8.0 - Sierra Symbolic Execution
● Mathematically solve the constraints to reach certain paths/states in the code.

○ Documentation - link

25

Constraints
● v5==0
● v8==0
● v11==0
● v14==0

Variable to solve
● v0 v1 v2 v3

https://github.com/FuzzingLabs/thoth/blob/master/doc/symbolic_execution_sierra.md


© 2023 FuzzingLabs - Building Cairo Security Tools - ETHCC6

Symbolic 
Bounded Model 

Checker for 
Sierra

June
Voyager integration

Static Analyzer

October

2022

Disassembler
Decompiler

Call graph

July/August

VS Code
Github Action

Sierra Symbolic Exec

April/May
Data Flow Graph

Symbolic Execution

November
Decompiler is 

now using SSA

September

Thoth - Evolution

26

Sierra support:
Decompilation, Call 

Graph, Analyzers

January

2022 2023



© 2023 FuzzingLabs - Building Cairo Security Tools - ETHCC6

Thoth 0.9.0 - Symbolic Bounded Model Checker for Sierra

● Thoth-checker - Symbolic Bounded Model Checker for Sierra
○ Formal verification of testing function written directly in Cairo
○ Equivalent in EVM: a16z/halmos

● Check failed

27

● Check succeeded

https://github.com/FuzzingLabs/thoth/blob/master/doc/symbolic_bounded_model_checker_sierra.md
https://github.com/a16z/halmos


© 2023 FuzzingLabs - Building Cairo Security Tools - ETHCC6

Cairo-fuzzer

28



© 2023 FuzzingLabs - Building Cairo Security Tools - ETHCC6

Cairo-Fuzzer - Architecture
● Architecture

○ Coverage-guided
○ Multithreaded with good scalability

■ 70k exec/s for 1 thread
■ 440k exec/s for 10 threads

○ Execution engines
■ lambdaclass/cairo-vm for Cairo contract
■ lambdaclass/starknet_in_rust for StarkNet contract

○ Usable as a library

● Features
○ Property testing
○ Minimizer
○ Replayer
○ Usage of dictionary
○ etc.

29

https://github.com/lambdaclass/cairo-vm
https://github.com/lambdaclass/starknet_in_rust


© 2023 FuzzingLabs - Building Cairo Security Tools - ETHCC6

Cairo-Fuzzer - Example
● 12 cores
● 460k exec/seconds
● demo

30

https://drive.google.com/file/d/1vMzsnXP21wWDZltyYIVdG3DpQfwN--GN/view?usp=sharing


© 2023 FuzzingLabs - Building Cairo Security Tools - ETHCC6

Future developments

31



© 2023 FuzzingLabs - Building Cairo Security Tools - ETHCC6

Future developments
● Future of thoth & cairo-fuzzer

○ Speed and documentation improvements
○ Tutorials

● Planning to build more fuzzer & security tools!
○ WebAssembly
○ Substrate
○ Cosmos/CosmWasm
○ Algorand
○ etc.

● Contacts us if you need customs security tool development!
○ Twitter: @Pat_Ventuzelo
○ Mail: patrick@fuzzinglabs.com

● Thanks for your time! Any questions?

32

https://github.com/FuzzingLabs/thoth
https://github.com/FuzzingLabs/cairo-fuzzer
https://twitter.com/Pat_Ventuzelo
mailto:patrick@fuzzinglabs.com

